Expansions of Modular Forms and Their Interpolation Properties
نویسندگان
چکیده
We define a power series expansion of a holomorphic modular form f in the p-adic neighborhood of a CM point x of type K for a split good prime p. The modularity group can be either a classical conguence group or a group of norm 1 elements in an order of an indefinite quaternion algebra. The expansion coefficients are shown to be closely related to the classical Maass operators and give p-adic information on the ring of definition of f . By letting the CM point x vary in its Galois orbit, the r-th coefficients define a p-adic K×-modular form in the sense of Hida. By coupling this form with the p-adic avatars of algebraic Hecke characters belonging to a suitable family and using a Rankin-Selberg type formula due to Harris and Kudla along with some explicit computations of Watson and of Prasanna, we obtain in the even weight case a p-adic interpolation for the square roots of a family of twisted special values of the automorphic L-function associated with the base change of f to K. 2000 Mathematics Subject Classification 11F67
منابع مشابه
NUMERICAL COMPUTATION OF PETERSSON INNER PRODUCTS AND q-EXPANSIONS - PRELIMINARY VERSION
In this paper we discuss the problem of numerically computing Petersson inner products of modular forms, given their q-expansion at∞. A formula of Nelson [Nel15] reduces this to obtaining q-expansions at all cusps, and we describe two algorithms based on linear interpolation for numerically obtaining such expansions. We apply our methods to numerically verify constants arising in an explicit ve...
متن کاملNUMERICAL COMPUTATION OF PETERSSON INNER PRODUCTS AND q-EXPANSIONS
In this paper we discuss the problem of numerically computing Petersson inner products of modular forms, given their q-expansion at∞. A formula of Nelson [Nel15] reduces this to obtaining q-expansions at all cusps, and we describe two algorithms based on linear interpolation for numerically obtaining such expansions. We apply our methods to numerically verify constants arising in an explicit ve...
متن کاملp-adic interpolation of half-integral weight modular forms
The p-adic interpolation of modular forms on congruence subgroups of SL2(Z) has been succesfully used in the past to interpolate values of L-series. In [12], Serre interpolated the values at negative integers of the ζ-series of a totally real number field (in fact of L-series of powers of the Teichmuller character) by interpolating Eisenstein series, which are holomorphic modular forms, and loo...
متن کاملSome fundamental results on modular forms
The purpose of this paper is to give complete proofs of several fundamental results about modular forms. Modular forms are complex functions with certain analytic properties, and that transform nicely under a certain group of transformations of the complex upper half plane. It turns out that modular forms can be used to study number theory, by investigating the coefficients in series expansions...
متن کاملUnimodal Sequences and “strange” Functions: a Family of Quantum Modular Forms
In this paper, we construct an infinite family of quantum modular forms from combinatorial rank “moment” generating functions for strongly unimodal sequences. The first member of this family is Kontsevich’s “strange” function studied by Zagier. These results rely upon the theory of mock Jacobi forms. As a corollary, we exploit the quantum and mock modular properties of these combinatorial funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009